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Abstract

Dynamic axisymmetric buckling of circular cylindrical shells struck axially by a mass is studied in order to clarify
the initiation of buckling and to provide some insight into the buckling mechanism as a transient process. It is

assumed that the material is elastic±plastic with linear strain hardening and displaying the Bauschinger e�ect. The
deformation process is analysed by a numerical simulation using a discrete model. Particular attention is paid to the
in¯uence of stress wave propagation on the initiation of buckling. It is found that the development of the buckling

shape depends strongly on the inertia properties of the striker and on the geometry of the shell. The theoretical
method is used to clarify some experimental data and good agreement is obtained with results on aluminium alloy
tubes. # 2000 Elsevier Science Ltd. All rights reserved.
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Nomenclature

a initial mean radius of the actual shell
c uniaxial elastic wave speed
c

p
1, c

p
2 plastic wave speeds, eqns (C9a,b)

es mean meridional strain vector, �e1s , . . . , en�1s �T
eis mean meridional strain in the i-th cell, eis � �2nt � 1�ÿ1

X2nt�1
k�1

eis,k
E, Eh Young's and hardening moduli, respectively
Fs

ia meridional force per unit hoop length in the i-th cell of the model, a � 1, . . . , 2nt � 1
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1. Introduction

Thin-walled ductile metal tubes are used widely in industry, and their static and dynamic behaviour

has been studied both theoretically and experimentally (see e.g. Florence and Goodier 1968; Wang Ren

et al., 1983; Jones, 1989; Murase and Jones, 1991, 1993; Chen Changen et al., 1992; Li Ming et al.,

1994; Lepik, 1998). In particular, axially crushed tubes have been examined in order to obtain the

critical forces, types and modes of buckling and the energy absorbing properties, etc.

The experimentally obtained buckling shapes of dynamically loaded circular tubes, not only vary

according to the geometry of the cross-section and the material properties, but they also depend on the

experimental loading technique as shown by Florence and Goodier (1968), Wang Ren et al. (1983),

Murase and Jones (1991, 1993), Chen Changen et al. (1992) and Li Ming et al. (1994). Moreover, a

Fy
ia circumferential force per unit hoop length in the i-th cell of the model, a � 1, . . . , 2nt � 1

Fr
ia radial force acting in the i-th cell of the model, a � 1, . . . , 2nt � 1

g gravitational acceleration
G striking mass
h wall thickness of the actual shell and model
H ' hardening parameter, (eqn (6b))
l length of the actual shell
L initial length of the i-th link
n number of the links of the model, nL � l
nt 2nt � 1= number of the springs across the wall thickness
Ns

i , N
y
i ,M

y
i meridional membrane force, circumferential membrane force and meridional bending

moment per unit hoop length (eqn 2(a)±2(e)) in the i-th cell of the model, respectively
P�t� axial load per unit hoop length at the impacted end
T0 initial kinetic energy
ui�t� axial displacement of the model
v0 initial velocity
wi�t� radial displacement of the model (taken positive outward).

Greek symbols
des, dey total strain increments
dep

s , dep
y plastic strain increments

dep equivalent plastic strain increment, (eqn (6c))
di shortening of the i-th link
Ftop, Fbottom outer diameters corresponding to the maximum radial displacements near the ends x=0

and x � l, respectively (F � 2�a� w� � h)
ji angle of rotation of the i-th link
l Eh=E
d �s e�ective stress increment, (eqn (6a))
s0 yield stress
scr static critical elastic stress of the actual shell, (eqn (12h))
�sc

s , s
c
y� co-ordinates of the origin of the Tresca hexagon (Fig. 2(c))

n Poisson's ratio
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complete description of the collapse process involves several stages. It is well known that a quasi-static
load causes a tube to collapse by a progressive folding process for which the deformations occur locally,
while high velocity impacts cause deformations to develop over the entire length of the tube due to
inertia e�ects (Jones, 1989). However, because of the complexity of the problem, a detailed knowledge
of the behaviour is not understood completely due to the di�culties in obtaining the stress pro®les in
thin-walled members. In particular, the initiation of the buckling mechanism as a transient process has
received little attention since the theoretical studies of Lee (1981a, b), except for some recent results for
cylindrical shells obtained by Lepik (1998) and rods reported by Karagiozova and Jones (1996a, b).

The experiments on aluminium alloy cylindrical shells reported by Chen Changen et al. (1992) and Li
Ming et al. (1994) show some local buckling e�ects which are explained tentatively by stress wave
e�ects. An analytical approach is used by Lepik (1998) to examine the development of the buckling
process in an elastic±plastic cylindrical shell struck axially by a mass. However, the complexity of the
problem has led to a number of simpli®cations in the theoretical analysis, which do not allow a
comparison to be made between the theoretical predictions and the available experimental data. In
particular, a static equilibrium state has been used to obtain the propagation of the ¯exural waves in the
shell which is not appropriate for modelling transient processes.

The e�ects of stress wave propagation on the elastic±plastic buckling of a rod, subjected to an axial
mass impact, is studied numerically using a discrete model by Karagiozova and Jones (1996a, b), where
the theoretical predictions are shown to be in agreement with several experimental studies. It is shown
that the inertia properties of the striking mass play an important role during the buckling process by
initiating the propagation of di�erent plastic waves along the rod which cause di�erent buckling
patterns (Karagiozova and Jones 1996b).

In the present paper, the dynamic response of circular cylindrical shells, which have di�erent
geometrical characteristics and are subjected to axial mass impacts having velocities between 6.26 m/s
and 125.3 m/s, is analysed in order to clarify the in¯uence of elastic and plastic stress waves on the
initiation of buckling and to provide some insight into the post-buckling behaviour. Di�erent loading
conditions are modelled to clarify the in¯uence of experimental loading techniques on the buckling
process. This analysis is carried out numerically using a discrete model for the axisymmetric buckling of
an elastic±plastic shell. The theoretical predictions are compared with the experimental data reported in
the literature by Florence and Goodier (1968) and Murase and Jones (1993) and obtained recently in the
Impact Research Centre at the University of Liverpool.

2. Types of loading conditions

Di�erent experimental techniques create a variety of load-time histories, which are not known in
advance, as they are a result of interaction between the loading device and the impacted structure. This
increases the complexity of a buckling analysis. Moreover, the characteristics of a load-time history can
in¯uence the initiation of buckling.

In the present study, the dynamic elastic±plastic response of two specimen types is analysed in order
to clarify the in¯uence of the loading conditions on the buckling behaviour of circular cylindrical shells.
It is assumed that the specimen in Fig. 1(a) is stationary and is impacted by a mass G travelling with an
initial velocity v0 (see Wang Ren et al., 1983; Chen Changen et al., 1992; Murase and Jones, 1993).
Di�erent combinations of the striking masses and initial velocities are examined in order to clarify the
in¯uence of the inertia properties of the striker on the buckling process and on the ®nal buckled shape.
The specimen in Fig. 1(b) with an attached mass G is impacted against a rigid wall (Florence and
Goodier, 1968; Murase and Jones, 1993).
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3. Discrete model for dynamic axisymmetric buckling of a circular cylindrical shell under axial impact

Ductile metal tubes with small radius-to-thickness ratios are known to collapse axisymmetrically when
impacted axially so that, for the purpose of the following analysis, the shell can be divided into identical
longitudinal strips. Each strip is assumed to carry the same axial load. In this case, the lumped mass
model in Fig. 2(a, b) can be used to study the dynamic axisymmetric buckling of a circular cylindrical
shell. It is assumed that the longitudinal axis of the idealised model coincides with the meridional axis of
the actual shell. A similar procedure was used by the present authors to build a discrete model for the
dynamic elastic±plastic buckling of a rod, subjected to various types of axial impacts (Karagiozova and
Jones, 1996a, b), which gave good agreement between the model predictions and experimental data.

The model in Fig. 2(a, b) consists of n rigid (with respect to bending, but compressible) weightless
links of length Li � Lÿ di connected by springs, which simulate the elastic±plastic material properties,
and where di is the reduction in length of the i-th link. The springs across the thickness cater for the
meridional membrane forces and the meridional bending moments, while the springs in the radial
direction, model the circumferential membrane forces in an actual shell. The forces Fs

ia and Fr
ia �

LiF
y
ia=�a� wi � are associated with the meridional and the circumferential stresses, respectively, acting in

a-th `layer' through the shell thickness, where a � 1, . . . , 2nt � 1 and nt are associated with the
integration points across the thickness. The thickness of the model is h. It is assumed that the total mass
of the shell per unit initial hoop length m1, is distributed as discrete masses m � m1=2n at each end of a
link.

The proposed model with elastic±plastic springs (Fig. 2(a)), which idealise the actual material
properties, has a yield condition for each layer in terms of the biaxial stresses, ss�s, z� and sy�s, z� in a
shell subjected to an axial impact. This approach is more accurate than using a yield condition in terms
of the generalised forces Ns, Ny and Ms and allows for the development of the temporal stress±strain
pro®les of thin-walled tubes in order to clarify the buckling and post-buckling processes.

Fig. 1. Types of specimens: (a) stationary, (b) moving.
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3.1. Equations of motion

Large rotations of the links in Fig. 2(a, b) are permissible so that the equations of motion for the
model are

G1 �u0 � Nx
0 � G1g, �1a�

Fig. 2. (a) A discrete model for axisymmetric shell buckling (the radial force Fr
i,a is shown for the inner layer only); (b) a typical

cell in the model; (c) yield locus for kinematic hardening.
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s1m �ui � Ns
i

n
cos ai�2� a1

ÿ
sin ji ÿ b1

�ÿ a2
ÿ
sin ji�1 � d1

�ÿ sin ai
h
a1
ÿ
cos ji ÿ b2

�
ÿ a2

ÿ
cos ji�1 � d2

�io
=2ÿNs

iÿ1
�
cos aiÿ1

�
2ÿ a1

ÿ
sin ji � b1

��
� a2 sin aiÿ1

ÿ
cos ji � b2

�	
=2ÿNs

i�1a2
�
cos ai�1

ÿ
sin ji�1 ÿ d1

�
� sin ai�1

ÿ
cos ji�1 ÿ d2

�	
=2ÿNr

iÿ1a1
ÿ
cos ji � b2

�
=4

�Nr
i

h
a1
ÿ
cos ji ÿ b2

�� a2
ÿ
cos ji�1 � d2

�i
=4

ÿNr
i�1a2

ÿ
cos ji�1 ÿ d2

�
=4ÿ a1M

s
iÿ1=Li �Ms

i �a1=Li � a2=Li�1 �

ÿ a2M
s
i�1=Li�1 �mf1� �wiÿ1, �wi, �wi�1, �u iÿ1, �u i�1, _wiÿ1, _wi, _wi�1, _uiÿ1, _ui, _ui�1 �

� 2mg, i � 1, . . . , nÿ 1,

�1b�

s2mLi �wi �Ms
iÿ1 ÿMs

i �1� ciLi=Li�1 � �Ms
i�1ciLi=Li�1 ÿNs

iÿ1Li

�
cos aiÿ1

ÿ
sin ji ÿ e1

�
ÿ sin aiÿ1�cos ji ÿ e2�

�
=2ÿNs

iLi

n
cos ai

hÿ
sin ji � e1

�ÿ ci
ÿ
sin ji�1 � d1

�i
ÿ sin ai

��cos ji � e2� ÿ ci
ÿ
cos ji�1 � d2

��o
=2�Ns

i�1Lici
�
cos ai�1

ÿ
sin ji�1 ÿ d1

�
ÿ sin ai�1

ÿ
cos ji�1 ÿ d2

��
=2�Nr

iÿ1Li�cos ji ÿ e2 �=4

ÿNr
iLi

�ÿ
cos ji � ci

ÿ
cos ji�1 � d2

�� e2
��
=4�Nr

i�1Lici
ÿ
cos ji�1 ÿ d2

�
=4

�mLi f2� �wiÿ1, �wi�1, �uiÿ1, �ui, �ui�1, _wiÿ1, _wi, _wi�1, _u iÿ1, _u i, _ui�1 �, i � 2, . . . , nÿ 2,

�1c�

where ai � �ji � ji�1�=2 and Nr
i � Ny

i Li=�a� wi �. The coe�cients a1, a2, b1, b2, ci, d1, d2, e1, e2, s1, s2 are
functions of the angles of rotation ji and their expressions are given in Appendix A together with the
equations of motion for w1, wnÿ1 and un which take into account the particular boundary conditions. In
eqn (1), G1 � G=2pa, G is the striking mass, g is the gravitational acceleration (taken into account in the
case of a drop mass impact), ui is the total axial displacement, ji, is the rotation of the i-th link and the
radial displacements, wi, (taken positive in the outward direction) are referred to the model parameters
as wi ÿ wiÿ1 � Li sin ji. The model can incorporate stress-free initial axisymmetric imperfections,
�wi ÿ �wiÿ1 � L sin �j i, but they are not examined in the present study. The generalised stresses Ns

i , N
y
i

and Mi, are the respective meridional membrane force, circumferential membrane force and meridional
bending moment per unit hoop length in the i-th cell and are obtained when integrating the biaxial
stress ®eld across the thickness as

dF s
ik �

h

�2nt � 1� dssik, dNs
i �

X2nt�1
k�1

dF s
ik,

dF y
ik �

h

�2nt � 1� dsyik, dN y
i �

X2nt�1
k�1

dF y
ik,
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dMs
i � cos

��jiÿ1 � ji�1 �=2
� h

2nt

X2nt�1
k�1
�kÿ nt ÿ 1� dF s

ik: �2a�±�2e�

It can be shown that eqn (1) reduces to (Jones, 1989)

@Nx

@x
ÿ rh

@u2

@t2
� 0,

@2Mx

@x2
� @

@x

�
Nx

�
@w

@x
� @ �w

@x

��
� Ny

a
ÿ rh

@2w

@t2
� 0

for small displacements (w is taken as positive in the inward direction for these equations only), where r
is the material density.

The initial conditions for the problems studied in this article are

ui�0� � 0, i � 0, . . . , n, _u0�0� � v0, _ui�0� � 0, i � 1, . . . , n,

wi�0� � _wi�0� � 0, i � 0, . . . , n
�3a�±�3d�

for a stationary specimen in Fig. 1(a) when struck by a mass G travelling with an initial velocity v0 at
the end i � 0, and

ui�0� � 0, i � 0, . . . , n, _ui�0� � v0, i � 0, . . . , nÿ 1, _un�0� � 0,

wi�0� � _wi�0� � 0, i � 0, . . . , n
�3e�±�3h�

for a moving specimen in Fig. 1(b) travelling with an initial velocity v0 and striking a rigid boundary at
i � n. Clamped boundary conditions with respect to the radial displacements are considered for both
specimen types

w0 � �w0 � 0 �4a�

wn � �wn � 0 �4b�
when Ms

0�t� 6� 0 and Ms
n�t� 6� 0. It is assumed for the clamped-clamped case that the end x � l � nL is

stationary, while the end x � 0 �i � 0� can move axially.

3.2. Constitutive equations

An elastic±plastic, strain rate insensitive material with linear strain hardening and displaying the
Bauschinger e�ect is considered in this article. It is assumed that the material obeys the Tresca yield
criterion. This is consistent with previous studies carried out by Sewell (1973) on the in¯uence of the
yield criterion on the critical buckling load which show that piece-wise linear surfaces give better
estimates for the critical load than the von Mises yield criterion which predicts values higher than the
corresponding experimental ones.

It is assumed that the strain increments are divided into elastic and plastic parts so that the total
increments are

des � dep
s � �dss ÿ n dsy�=E,
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de0 � dep
y � �dsy ÿ n dss �=E,

dep
z � ÿ

ÿ
dep

s � dep
y

�
: �5a�±�5c�

The e�ective stress increment, d �s , satis®es the relation

d �s � H 0 dep, �6a�

H 0 � EEh=�Eÿ Eh� � lE=�1ÿ l� �6b�
for a linear strain hardening material, where the equivalent plastic strain increment, dep, is

dep � 2
hÿ

dep
s

�2� ÿdep
y

�2� ÿdep
s

�ÿ
dep

y

�i1=2
=
���
3
p

, �6c�

for an incompressible material and axisymmetric behaviour. The total strains, es�z� and ey for an actual
shell are modelled by the spring displacements in the model cells as

eis�z� � ÿdi=Lÿ 4z sin
�
�ji ÿ jiÿ1�=2

�
=�Liÿ1 � Li � �7a�

eiy � wi=a, �7b�
where

di � Lÿ
h
�wi ÿ wiÿ1 �2��L� ui ÿ uiÿ1 �2

i1=2
�7c�

and for small angles eqn (7a) reduces to

ex � @u

@x
ÿ z

@2w

@x2
� 1

2

�
@w

@x

�2

� 1

2

�
@u

@x

�2

�7d�

when assuming L � Dx and Dx4 0.
In the above equations, E is Young's modulus and Eh is the hardening modulus. In this case, explicit

expressions for the stress increments as functions of the strain increments and the material properties
can be obtained for elastic loading and elastic unloading and for the plastic loading associated with each
side of the Tresca diagram (Fig. 2(c)) as

dss � f3�des, dey, n, E, l� �8a�

dsy � f4�des, dey, n, E, l�, �8b�
where n is Poisson's ratio (see Appendix B). The force-time history is a result of interaction between the
applied load and the response of the specimen, so that an explicit integration procedure is required
(Karagiozova and Jones, 1996a, b).

It is known that the axial compression and bending phases of deformation can be distinguished in
many elastic±plastic buckling problems. This phenomenon leads to complex loading paths at each point
of a structure, particularly for strain hardening materials. In the present paper, a kinematic hardening
rule is assumed, which allows for a translation of the Tresca hexagon without any distortion of the
elastic range where the velocity of the yield locus is proportional to the plastic strain rates (Prager's
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hardening rule). The discrete model in Fig. 2(a) requires �n� 1� � �2nt � 1� components of ss and sy, so
that �n� 1� � �2nt � 1� yield loci associated with the loading paths are analysed at each time step. The
temporal movement of the Tresca hexagon in the plane �ss, sy�, which is identi®ed by the variation of
its centre �sc

s , s
c
y� (Fig. 2(c)), can be associated with the loading path of each layer in a shell cross-

section.
If Fj��ss, sy�, �sc

s , s
c
y��, j � 1, . . . , 6 is a system of functions which determine the six sides of the Tresca

yield locus, then elastic loading occurs when all Fj��ss, sy�, �sc
s , s

c
y��< 0. Now

Fj

�
�ss, sy�,

ÿ
sc
s , s

c
y

�� � 0, ÇF j > 0,
@Fj

@ss
_s s � @Fj

@sy
_sy > 0, _ep 6� 0, �9a�±�9d�

for active plastic loading,

Fj

�
�ss, sy�,

ÿ
sc
s , s

c
y

�� � 0, ÇF j � 0,
@Fj

@ss
_s s � @Fj

@sy
_sy � 0, _ep � 0, �10a�±�10d�

for neutral plastic loading and

Fj

�
�ss, sy�,

ÿ
sc
s , s

c
y

�� � 0,
@Fj

@ss
_s s � @Fj

@sy
_sy< 0, _ep � 0, �11a�±�11c�

for elastic unloading.

3.3. Method of solution

The initial value problem stated by eqns (1)±(3) is highly non-linear due to the material and the
geometrical nonlinearities. It is integrated numerically using the D0EAF-NAG FORTRAN Library
Routine for a system of ®rst order ordinary di�erential equations using a variable order, variable step
method implementing the Backward Di�erentiation Formulae (BDF). This method of integration
allowed the required accuracy to be maintained during the entire response of the model. The following
non-dimensional variables are used when integrating eqns (1)±(3)

yi � ui=L, zi � 2wi=h, �z i � 2 �wi=h, �d i � di=L, �N
s

i � 2Ns
i=scrh, �N

y
i � 2Ny

i =scrh,

�M
s

i � 2Ms
i=scrh

2, scr � Eh
�
3�1ÿ n2�

�ÿ1=2
=a, t � t�Eh=r�1=2=l:

�12a�±�12i �

The axial force, acting on the end of a shell, P�t�, and the stresses in the shell wall ss, sy, are discussed
further in terms of the dimensionless variables

�P �t� � 2P�t�=hscr qs � ss=scr, qy � sy=scr, �13a�±�13c�
where scr is de®ned by eqn (12h) and is the critical elastic buckling stress for axisymmetric buckling of
an actual shell.

The numerical calculations presented in this paper are obtained with a dimensionless time step
Dt � 0:00005 which is to be compared with a dimensionless time of 1900Dt � 0:095 which is required
for an elastic wave to propagate along one length of the shell for the particular material properties given
in Section 4.

Due to the severe loading conditions, large deformations can develop during the response. In such
cases, non-penetration conditions should be employed at the shell wall and at the edges of a shell. The
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contact problem arising from these conditions is complicated (see e.g. Benson and Hallquist, 1990), but
because of the spring-mass discretisation of the shell, a simple non-penetration algorithm is used in this
paper.

It is assumed that the shell walls can only touch which leads to the condition that the equations of
motion eqn (1), are valid only when the distance between the axial co-ordinates of two non-
neighbouring points, �yi, zi �, is not less than the shell thickness. If wall touching occurs at points j and
j� k, then deformation ceases in that part of the shell between j and j� k, but that part of the shell
continues to move as a rigid body, so that

_yi � _yj, i � j, . . . j� k �14a�

_z i � 0, i � j, . . . j� k: �14b�
The condition for non-penetration of the edges of the shell is assured when assuming that the shell

cannot go through the supports. Thus, if the axial displacements, yi, near the supports of the shell
(i � l, . . . , k and/or i � nÿ 1ÿ k, . . . , nÿ 1) reach the values of the support coordinates, y0 or yn, they
continue to move axially with the axial velocities of the supports, while the radial velocities become
zero, i.e.

_yi � _y0, i � 1, . . . k, �15a�

_z i � 0, i � 1, . . . , k, �15b�
and/or

_yi � _yn, i � nÿ 1ÿ k, . . . , nÿ 1 �16a�

_z i � 0, i � nÿ 1ÿ k, . . . , nÿ 1, �16b�
where k is the number of the shell points which are in contract with the support wall.

4. Comparison with experimental results

In this section, the model presented in Fig. 2 is veri®ed for several types of loading which generate
di�erent buckling modes. The buckling shapes predicted by the model are compared with some new
experimental data and with that reported by Florence and Goodier (1968) and Murase and Jones
(1993). The numerical calculations are carried out for an aluminium alloy A1 6061-T6 having Young's
modulus E = 69 GPa, hardening modulus Eh � 690 MPa and a yield stress s0=310 MPa.

4.1. Low velocity impact on a stationary specimen

The experiments discussed in this section were obtained on stationary vertical tubes which were placed
on the anvil of a drop hammer rig in the Impact Research Centre at the University of Liverpool. The
specimens have a length l � 76:2 mm, outer diameter 25.4 mm and thicknesses hA � 2:41 mm, hB � 1:65
mm and hC � 0:89 mm (Specimens A, B and C, respectively) and were struck on the free end by a heavy
mass G having an initial velocity v0. The force-time histories and the ®nal buckled shapes predicted by

D. Karagiozova, N. Jones / International Journal of Solids and Structures 37 (2000) 2005±20342014



the model are shown in Figs. 3 and 4, respectively. It is evident from Fig. 3 that the applied forces
acting on the three specimens have a ®nite rise time and that the compressive deformation of specimen
A in Fig. 3(a) has an almost rectangular pulse shape. A localisation of the deformations, which form the
folds near the impacted end, is a general feature of the deformed shapes in Fig. 4. It is evident that the
thickest shell is deformed mainly in compression, while the h=1.65 mm and h=0.89 mm thick
specimens respond with an axial compression and a local buckling near the impacted end with the
remainder of the shell largely undeformed.

A comparison between the experimental data and the present predictions are presented in Table 1. It
is evident that reasonable agreement is obtained for the axial shortening �dy� and for the maximum ®nal
outside tube diameters (Ftop, Fbottom) near the supports.

Fig. 3. Force-time histories (stationary specimens): (a) specimen A, a = 11.495 mm, h = 2.41 mm, l = 76.2 mm, G = 12.2 kg,

v0 � 7:25 m/s, n = 50, nt � 3; (b) specimen B, a = 11.875 mm, h = 1.65 mm, l = 76.2 mm, G = 12.2 kg, v0 � 7 m/s, n= 50,

nt � 3; (c) specimen C, a = 12.255 mm, h = 0.89 mm, l = 76.2 mm, G = 3.7 kg, v0 � 6:26 m/s, n= 60, nt � 2.
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4.2. High velocity impact on a stationary specimen

Specimen M38 in Murase and Jones (1993) has length l=101.6 mm, mean radius a=11.875 mm and
thickness h=1.65 mm and is struck axially by mass G=0.106 kg travelling with an initial velocity v0 �
97 m/s (Fig. 1(a)). The predicted ®nal shape of the specimen is presented in Fig. 5(a) from which it is
evident that the entire length is deformed almost regularly except for large local deformations near the
stationary end. A similar deformed shape is observed experimentally with an axial shortening of 13 mm
and maximum radial displacements giving Fbottom � 31 mm, which compares with the predicted values of
dy � 12:7 mm and Fbottom � 30:95 mm. The impact force is applied suddenly to the specimen and then
decreases with time (Fig. 5(b)). It is shown by Karagiozova and Jones (1996b) that this type of loading
force is due to the inertia properties of the striker.

4.3. High velocity impact of a shell on a rigid wall

The specimen shown in Fig. 1(b) is impacted against a rigid wall and is deformed between the wall
and the mass attached to one end of the shell (Florence and Goodier, 1968). The shell and the mass

Fig. 4. Final buckled shapes: (a) specimen A; (b) specimen B; (c) specimen C.

Table 1

Comparison between the experimental data and the model predictions for low velocity impact (drop mass impact)

Experiment Model predictions

dy Ftop Fbottom dy Ftop Fbottom

Specimen (mm) (mm) (mm) (mm) (mm) (mm)

A 5.8 26.69 26.61 5.54 26.91 26.80

B 8.35 30.72 26.42 8.09 31.14 27.10

C 6.55 29.05/ 26.42 6.21 31.42 26.15

30.85
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have equal velocities at t � 0, but the impacted end is stopped at t� � 0. Typical force-time histories for
�P �l, t�, at the interface between the rigid target and a thick shell, and the force, �P �0, t�, acting on the
attached mass, are shown in Fig. 6(a). The shape of the pulse, caused by the interaction between the
shell and the rigid target, is similar to the pulse presented in Fig. 3(a), but in the current case of a high
velocity impact, the force is applied more rapidly to the shell. The force �P �0, t� is initiated by the
re¯ected stress wave from the attached mass so that it is zero until t=0.095. The buckled shapes for two
relatively thick shells, which correspond to the specimens identi®ed as tubes 4 and 13 in Florence and
Goodier (1968), are presented in Fig. 6(b, c). Tube 4 has l = 76.2 mm, a = 11.495 mm and h = 2.41
mm and tube 13 has the same cross-section but l = 101.6 mm. Regular shapes are observed for both
shells having almost equal wave lengths with the wave number depending on the shell length. The ®nal
experimental buckled pro®le of tube 4 (Florence and Goodier, 1968) is presented by a dashed line in
Fig. 6(b). The calculated response time (the duration of the impact event) and the axial shortening, dy,
are compared with the corresponding experimental values obtained by Florence and Goodier (1968) in
Table 2 (all specimens have an outer diameter of 25.4 mm). It is evident that the proposed shell model
provides reasonable estimates for dy but overestimates the duration of the impact event.

An impact of a moving specimen impacting a rigid wall, as shown in Fig. 1(b), is modelled for a shell
having l= 101.6 mm, a= 11.875 mm and h= 1.65 mm when the initial velocity is 81 m/s and the attached
mass is 0.114 kg (M4 in Murase and Jones, 1993). The predicted axial shortening is 12.3 mm, while the
corresponding experimental value for dy is 14 mm. The ®nal buckled shape for this specimen is presented
in Fig. 6(d). It is evident that, although the impact conditions for the last two examples in
Fig. 6(c, d) are similar, the thinner shell M4 in Fig. 6(d) responds with large local plastic deformations near
the shell wall in contact with the target. The predicted values for the radial displacements give Fbottom � 31:1
mmwhich compares favourably with the corresponding experimental value ofFbottom � 32 mm.

Fig. 5. Dynamic response of specimen M38 (Murase and Jones, 1993) (stationary): 11.875 mm, h = 1.65 mm, l = 101.6 mm,

G = 0.106 kg, v0 = 97 m/s, n = 60, nt � 3. (a) Final buckled shape; (b) force-time history.
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Fig. 6. Final buckled shapes for moving specimens: (a) force-time history for tube 4 (Florence and Goodier, 1968): a = 11.495

mm, h = 2.41 mm, l = 76.2 mm, G = 0.127 kg, v0 = 101.3 m/s, n = 50, nt � 4; (b) Final buckled shape of tube 4 (Florence and

Goodier, 1968): n = 50, nt � 4, - - - experiment (Florence and Goodier, 1968), Ð model prediction; (c) ®nal buckled shape of tube

13 (Florence and Goodier, 1968): a = 11.495 mm, h = 2.41 mm, l = 101.6 mm, G = 0.127 kg, v0 101.6 m/s, n = 60, nt � 3; (d)

®nal buckled shape of specimen M4 (Murase and Jones, 1993): a = 11.875 mm, h = 1.65 mm, l = 101.6 mm, G = 0.114 kg,

v0 = 81 m/s, n = 50, nt � 3.
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The results presented in this section show that large local deformations can be observed for both low
(Fig. 4(b, c)) and high (Fig. 6(d)) velocity impacts, while for high velocity impacts, regular buckling shapes
can develop for both moving (Fig. 6(b, c)) and stationary (Fig. 5(a)) shells. Moreover, di�erent buckling
shapes are generated when changing the geometry of the shell but maintaining similar loading and
boundary conditions (Figs. 6(c) and 6(d)). Clearly, the buckling phenomenon is governed by the whole
complex of loading parameters, boundary conditions and the geometrical characteristics of the specimens,
so that the interaction between all impact parameters should be considered in any particular case.

5. Relation between the buckling shapes and stress wave phenomena

The local e�ects observed near the supports of some of the shells examined in Section 4 suggest that
the buckling phenomenon is in¯uenced signi®cantly by stress wave propagation e�ects. The
experimentally observed local buckling e�ects (Chen Changen et al., 1992; Li Ming et al., 1994) for
shells made of two kinds of aluminium alloys also have been explained tentatively by stress wave e�ects,
but without any quantitative explanation of the observed phenomena. It was shown by Karagiozova
and Jones (1996b) that there is a strong relationship between the initiation of buckling and the elastic
and plastic stress waves travelling along a rod, so that a similar type of behaviour is anticipated for
axially loaded tubes.

It is shown in Appendix C (see eqn (C9)) that one elastic and two plastic stress wave speeds are
possible in an elastic±plastic thin-walled tube with plastic ¯ow governed by the Tresca yield condition.
The elastic loading wave propagates with a speed ce � fE=�r�1ÿ v2��g1=2 and the plastic waves can
propagate with two di�erent velocities, namely

c
p
1 �2�E=r�1=2

n
2l=

�
2l�1ÿ n2� � �1ÿ l�

���
3
p �o1=2

and

c
p
2 �2�E=r�1=2

(
2l� �1ÿ l� ���

3
p

2�1ÿ n�
�
l�1� n� � �1ÿ l� ���

3
p �)1=2

,

depending on the stress state. The plastic wave speed c
p
2 is associated with the sides CD and FA of the

Tresca hexagon in Fig. 2(c), while c
p
1 is associated with the other sides.

Table 2

Comparison between the experimental data (Florence and Goodier, 1968) and the model predictions for high velocity impact (mov-

ing specimen)

Experiment

Florence and Goorier (1968)

Model prediction

Attached mass h l n0 dy duration

Specimen (g) (mm) (mm) (m/sec) dy(mm) duration (msec) (mm) (msec)

Tube 4 127 2.41 76.2 101.3 13.9 260 13.1 288

Tube 13 127 2.41 101.6 104.3 13.9 269 14.7 316

Tube 17 120 2.54 101.6 120.5 17.3 271 17.9 320

Tube 20 120 2.54 101.6 125.3 19.8 286 19.2 330

Tube 22 300 2.41 152.4 75 15.5 432 16.9 510
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5.1. Stress wave phenomena in a moving specimen

The temporal development of the buckling shape for the shell presented in Fig. 6(b) and predicted by
the model at 65, 100 and 150 ms after impact, is shown in Fig. 7. The associated axial shortenings are
7.8, 11.4 and 15.1%, while the corresponding experimental values (Florence and Goodier, 1968) are 7.2,
12.5 and 14.5%, respectively. The preferred mode at 65 ms in Fig. 7 is consistent with the experimental
results which show that the shell commences to buckle from the impacted end. The meridional strain
distributions along the longitudinal axis and across the thickness of the shell at t � 65 ms are shown in
Fig. 8(a), while Figs. 8(b) and 8(c) present the movement of the centre of the Tresca hexagon in the s
and y directions, respectively.

The position of the yield loci, qc
s , shows that the movement in the s direction is much larger than the

movement in the y direction, which, therefore, indicates an almost uniaxial stress state on the side DE
of the Tresca hexagon. At t � 65 ms, the plastic wave travelling with a speed c

p
1 has reached a distance

0.458l from the impacted end (x=l ). However, an analysis of Fig. 8(b, c) shows that, although very
small, plastic deformations have developed along the entire length of the shell, as indicated by the
movement of the yield loci from their origins (0, 0). This e�ect is due to the circumferential forces which
cause a loading path associated with the side CD of the yield condition compression in the axial
direction and tension in the circumferential direction, (Fig. 2(c)) shortly after the impact. This plastic
wave which has a speed c

p
2 > c

p
1 overtakes the initial plastic wave travelling at a speed c

p
1 and the two

plastic waves become distinct at t=0.35 ms (t=0.00233). It should be noted that the faster moving
stress wave with a speed c

p
2 has small associated plastic strains, while large plastic strains are associated

with the slower moving stress wave with a speed c
p
1 (Fig. 8(a, d)). The slower plastic wave propagates

one length of the tube in 142 ms (t=0.932), while the corresponding time for the faster plastic wave is
18 ms (t � 0:118). Fig. 8(b, c) indicates also, that the elastic wave travelling from x=l has re¯ected
from x � 0 as a plastic one at t � 14:5 ms (t � 0:0954) and at t � 65 ms has travelled a distance 0.355l
from the moving end with a speed c

p
1. However, the small inertial resistance of the attached mass

(G=0.127 kg) cannot cause signi®cant plastic strains. Nevertheless, buckling is also evident near the
moving end (x = 0) along the distance covered by the re¯ected plastic wave (Fig. 7, t � 65 ms).

Fig. 7. Development of the buckling shape for Tube 4 (Florence and Goodier, 1968): n = 50, nt � 4.
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The mean meridional strain distributions at t = 100 ms and 150 ms are presented in Fig. 8(d) and the
movements of the yield loci are presented in Fig. 8(e, f) for the inner (z � ÿh=2) and for the outer
(z � h=2) shell surfaces, respectively. It is evident that buckling develops with a sustained uniaxial plastic
¯ow and that the radial displacements start to grow at a point as soon as the primary plastic wave has
propagated a su�cient distance for a wrinkle to form. The buckling shape is completely formed at
t � 150 ms (Fig. 7) when the plastic wave, which is propagating at a speed cp

1, has reached the other end
of the tube. Subsequently, the re¯ection of this wave from the end x � 0 causes only an increase of the
radial displacement amplitudes near this end.

It is shown in Section 4.3 that the deformed shape of a moving specimen impacting on a rigid wall at
v0 � 81 m/s and having a thickness h = 1.65 mm (Fig. 6(d)) is characterised by large local deformations
near the impacted end in contrast with the regular shape of the shell in Fig. 6(c). In the case in

Fig. 8. Stress±strain state of tube 4 (Florence and Goodier, 1968): (a) distribution of the meridional strain, es �x, z�, at t = 65 ms;

(b) movement of the yield loci, qc
s �x, z�, at t = 65 ms; (c) movement of the yield loci, qc

y �x, z�, at t = 65 ms; (d) mean meridional

strain, es; - - - t = 100 ms, Ð t = 150 ms; (e) movement of the yield loci, qc
s , at t = 100 ms, - - - outer surface, Ð inner surface; (f)

movement of the yield loci, qc
y, at t = 150 ms, - - - outer surface, Ð inner surface.
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Fig. 6(d), a plastic wave with a speed c
p
1 propagates from the impacted end at t � 0 and the buckling

pro®le starts to develop as soon as this wave has passed a critical length su�cient for the ®rst wrinkle to
develop. The strain distribution and the corresponding origins of the yield loci, qc

s , are presented at
t � 32 ms in Figs. 9(a) and 9(b), respectively. The strain distributions at t � 32, 49 and 65 ms in Fig. 9(c)
show that large plastic deformations, both in compression and bending, develop near the impacted end.
The plastic wave originating from this end, however, only propagates from this end until the growth of
the radial displacements causes a partial elastic unloading of some cross-sections and a development of
reversed plastic loading. Small plastic deformations are evident near the moving end which are caused
by the elastic waves being re¯ected as plastic waves from the attached mass.

5.2. Stress wave phenomena in a stationary specimen

A di�erent pattern of the stress waves is observed when a stationary specimen (Fig. 1(a)) is struck by
a small mass travelling with a high initial velocity. The suddenly applied force at the impacted end,

Fig. 9. Stress±strain state of specimen M4 (Murase and Jones 1993) (moving) n = 50, nt � 3: (a) distribution of the meridional

strain, es (x, z ), at t = 32 ms; (b) movement of the yield loci, qc
s (x, z ), at t = 32 ms; (c) strain distribution at t = 32, 49 and 65 ms.
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which decreases with time (Fig. 5(b)), causes a plastic wave to propagate along the length of the shell
with a decreasing strain amplitude at speed approximately c

p
1 (Karagiozova and Jones, 1996b) and the

associated strain distribution is shown in Fig. 10(a) at t � 49ms. The co-ordinates of the centres of the
yield loci, qc

s , and qc
y, are presented in Fig. 10(b) and 10(c) and reveal a nearly uniaxial stress state. It is

evident, however, that the shell wall has undergone plastic deformations along the entire length which is
caused by the faster plastic wave, c

p
2. In a similar manner to the case of a moving specimen described in

the previous section, much larger plastic strains are associated with the slower stress wave travelling at
speed c

p
1 (Fig. 10(a, d)). The slower plastic wave propagates one length of the tube in 189 ms (t=0.932),

while the corresponding time for the faster plastic wave is 18 ms (t=0.118). Although the axial strains
near the impacted end are beyond the elastic limit (ee=s0/E= 0.0045) and the corresponding axial
stress could cause buckling, the primary plastic wave continues to propagate until t150 ms without
buckling because the radial inertia suppresses the growth of the radial displacements. A wrinkle starts to
develop from the stationary end due to the elastic wave being re¯ected as a plastic one. The
corresponding strain distributions are shown in Fig. 10(d) and correspond to the buckled pro®le
presented in Fig. 10(e) with small wrinkles along the length and larger radial displacements near the
stationary end which are particularly noticeable at t � 81 ms. Large plastic strains have developed near
the stationary end because this boundary causes a new plastic wave to develop which propagates with a
speed c

p
1. For t > 100 ms, the primary plastic wave is destroyed and the ®nal buckling shape (Fig. 5(a))

corresponds to the one which develops early in the response (Fig. 10(e)).
The development of the deformation process shows that a regular buckling shape develops during the

passage of the primary plastic wave, but that radial inertia suppresses the rapid growth of the radial
displacements. The strains almost double upon re¯ection of the elastic wave at x=l leading to large
axial strains near the stationary end. Simultaneously, the circumferential forces increase rapidly which
causes a local wrinkle to develop near the stationary end. The stress pro®les at some cross-sections at
t � 300 ms are shown in Fig. 10(f). It is evident that the cross-sections near the stationary end (x=l )
have undergone large plastic deformations leading to reversed plastic loading, while the rest of the shell
has preserved the shape formed during the passage of the primary plastic wave when large compressive
strains develop. The observed buckling pro®le can be attributed to the inertia properties of the striker
which cause an initial unloading wave (Nowacki, 1978; Karagiozova and Jones, 1996b) to propagate
along the shell, so that only the re¯ected elastic wave can cause large deformations near the stationary
end.

A lower impact velocity requires larger striking masses in order to provide su�cient energy to cause
buckling of a stationary specimen. In this case, the critical stress for buckling can be reached after a
number of re¯ections. This phenomenon can be observed for specimen B in Fig. 4(b) (G=12.2 kg,
v0 � 7 m/s) which cannot buckle in the elastic range. Thus, axial elastic waves propagate along the shell
and re¯ect from the boundaries until the stresses reach the yield limit. In this particular case, the elastic
wave re¯ects from the moving end as a plastic one at t � 0:19 �t129 ms� and starts to propagate with a
speed c

p
1. Due to the circumferential forces and ®nite rise time of the applied force, a plastic wave

having a speed c
p
2 > c

p
1 starts to propagate at t136 ms (t � 0:237) from the same end of the shell. At

t143 ms (t � 0:285), the next re¯ection of the elastic wave from the stationary end also initiates a plastic
wave with a speed c

p
2. This wave has propagated a distance of 0.56l from the stationary end at t � 53 ms

when the entire length of the shell has become plastic. At this particular time the positions of the yield
loci (qc

s and qc
y) along the shell and across the thickness are presented in Fig. 11(a) and (b). It is evident

that the entire length of the shell has undergone plastic deformations, but with a larger axial
compression closer to the stationary end. The positions of the Tresca hexagons, qc

s and qc
y associated

with the mid-surface (z � 0) are presented for four particular times in Fig. 11(c, d), respectively. These
results show that, until t153 ms, the deformation process in the shell can be associated with the stress
wave propagation phenomenon, while the structural response governs the deformations for later times.
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Fig. 10. Stress±strain state of specimen M38 (Murase and Jones, 1993) (stationary) n = 60, nt � 3: (a) distribution of the meridio-

nal strain, es (x, z ), at t � 49 ms; (b) movement of the yield loci, qc
s �x, z�, at t � 49 ms; (c) movement of the yield loci, qc

y �x, z�, at
t � 49 ms; (d) mean meridional strain, es and circumferential strain, ey; (e) radial displacement pro®les of the shell; (f) stress pro®les

at t � 300 ms.
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Fig. 11. Behaviour of specimen B; n= 50, nt � 3: (a) movement of the yield loci, qc
s �x, z�, at t = 53 ms; (b) movement of the yield

loci, qc
y �x, z�, at t � 53 ms; (c) movement of the yield locus, qc

s , at ®bre z = 0; (d) movement of the yield locus, qc
y, at ®bre z = 0;

(e) variation of the maximum radial displacements with dimensionless time; (f) movement of the yield locus, (qc
s , q

c
y) with dimen-

sionless time, - - - outer surface (z = h/2); Ð inner surface (z � ÿh=2).
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The plastic deformations, which are associated with the side CD of the yield surface in Fig. 2(c),
develop due to the in¯uence of the circumferential forces when the magnitudes of both components qs

and qy increase as is shown in Fig. 11(c, d). However, the deformation of the shell develops within a
sustained plastic ¯ow under an increasing, almost uniform meridional force until t � 4:7 �t1715 ms�.
After that, local deformations near the impacted end start to grow more rapidly due to the reduced
radial inertia forces.

The temporal variation of the maximum radial displacement near the impacted end (at x/l = 0.08)
and near the stationary end (x/l = 0.92) are shown in Fig. 11(e). The larger stresses near the stationary
end at the beginning of the deformation process cause a more rapid growth of the radial displacements
near this particular end, but shortly, the radial displacements near the impacted end start to dominate.
These displacements start to grow rapidly around t � 4:6 �t1700 ms� which is consistent with the time
when the applied force starts to decrease in Fig. 3(b). This behaviour can be explained by the
development of the plastic deformations across the thickness of the shell wall. The temporal variation of
the yield locus positions associated with the inner (z � ÿh=2) and outer (z � h=2) surfaces are shown in
Fig. 11(f). The material on the inner surface (z � ÿh=2) is subjected mainly to compression, while a
complex loading path is observed for the material on the outer surface. It is evident that the loading
path is associated with the side CD until t=7.6, but after that, the circumferential forces start to
dominate and the loading path is on the side BC when plastic deformations in tension develop and
results in large local de¯ections.

Comparing the force-time histories in Fig. 3(a±c), one can see that the h=0.89 mm thick shell
buckles as soon as the stresses reach the critical values because the radial inertia forces cannot support
the unbuckled shape. An elastic wave re¯ects from the stationary end at t � 0:095 as a plastic wave that
results in small local plastic deformations near this particular end. The initial kinetic energy is absorbed
largely by the axial compression forces and by the wrinkle, which develops near the impacted end, so
that signi®cant deformations in bending do not develop near the stationary end. By way of contrast, the
force-time history for the thick 2.41 mm shell has an almost rectangular shape because large radial
displacements do not develop during the impact event and cause reversed strains.

5.3. Characteristics of impacts caused by di�erent loading conditions

The results presented in Sections 5.1 and 5.2 demonstrate some of the characteristic features of the
axial impact of a cylindrical shell resulting from di�erent loading conditions. The inertia of the striking
mass plays an important role in generating the applied axial force and in the development of the strain
pro®le along the longitudinal shell axis at buckling. A large mass±low velocity impact causes mainly a
structural response but the stress distribution along the shell at the beginning of the impact event
determines the initial buckling shape. High velocity impacts cause di�erent strain distributions at the
initiating of buckling. A small striking mass causes a sudden axial loading, which then decreases and
initiates an unloading plastic wave (Nowacki, 1978; Karagiozova and Jones, 1996b). However, in spite
of the high strains and stresses in the shell, radial inertia suppresses the growth of the radial
displacements and only the elastic wave being re¯ected as a plastic one from the stationary end causes
large local radial displacements to develop near this particular end. A primary wave causing a uniform
stress and strain arises from an impact on a rigid wall. In this case, the lateral inertia forces in a thicker
shell suppress the local growth of the radial displacements, thus allowing for a further propagation of
the primary wave and for buckling to develop within a sustained axial compressive plastic ¯ow. A
thinner shell subjected to the same loading conditions, however, cannot support the unbuckled shape, so
that local deformations grow rapidly near the struck end, thus preventing propagation of the initial
plastic stress wave.

The buckling behaviour shows that the radial inertia forces dominate the buckling process. For
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example, the deformed shapes presented in Figs. 4(c) and 6(d) are similar geometrically, despite the fact
that the loading conditions are completley di�erent, both specimens have buckled near the impacted
end, while the remainder of the shell length is deformed slightly. This phenomenon is due to the fact
that, in both cases, the radial inertia forces are not large enough to suppress the rapid growth of the
radial displacements near an impacted end.

6. Conclusions

The axisymmetric buckling of elastic±plastic circular cylindrical shells under axial impact is studied
numerically using a discrete model. A strain-rate insensitive elastic±plastic material with linear strain
hardening and displaying the Bauschinger e�ect is considered. The stress wave propagation e�ects are
analysed for moving and stationary specimens with di�erent loading conditions given by various
combinations of the striking mass and the initial velocity. Good agreement is obtained with some
experimental data on aluminium alloy tubes.

It is found that the dynamic buckling process is governed by stress wave propagation e�ects and, in
general, the entire length of the shell is involved in the deformation process for a high velocity impact.
This phenomenon is known as dynamic plastic buckling. However, the ®nal buckling shape depends
strongly on the inertia properties of the striker and the geometry of a shell. Regular buckling shapes for
a high velocity impact occur in relatively thick shells when buckling develops within a sustained axial
compressive plastic ¯ow. A localisation of buckling can develop in thinner shells when the buckling
process involves a partial unloading of some cross-sections of a shell, thereby interrupting any further
axial stress wave propagation. A low mass±high velocity impact causes a large axial compression to
develop near the impacted end, while large bending deformations occur near the stationary end, and a
considerable portion of the initial kinetic energy is absorbed in compression during the initial
deformation phase. Larger mass±lower initial velocity impacts tend to cause large bending deformations
near the impacted end which leads to a progressive folding.
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Appendix A. Coe�cients in the equation of motion and the boundary conditions

The coe�cients in the equations of motion eqn (1b) and (1c) are functions of the angles of rotation ji

and their particular expressions are

a1 � 2 sin aiÿ1
n

sin ji

�
sin aiÿ1

ÿ
1� sin2 ai

�
� cos aiÿ1 sin ai cos ai

�
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�
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ÿ
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a2 � 2 sin ai
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b1 � sin ai
ÿ
sin ai sin j� cos ai cos ji

�
, �A2a�

b2 � sin ai
ÿ
sin ai sin ji � cos ai cos ji

�
, �A2b�

ci �
n

sin ji

�
sin ai

ÿ
1� sin2 aiÿ1

�
� cos ai sin aiÿ1 cos aiÿ1�

�
� cos ji

�
cos ai

ÿ
1� cos2 aiÿ1

�
� sin ai sin aiÿ1 cos aiÿ1

�o.n
sin ji�1

�
sin ai

ÿ
1� sin2 ai�1

�
� cos ai sin ai�1 cos ai�1

�
� cos ji�1

�
cos ai

ÿ
1� cos2 ai�1

�
� sin ai sin ai�1 cos ai�1

�o
,

�A3�

d1 � sin ai�1
ÿ
sin ai�1 sin ji�1 � cos ai�1 cos ji�1

�
, �A4a�

d2 � cos ai�1
ÿ
sin ai�1 sin ji�1 � cos ai�1 cos ji�1

�
, �A4b�

e1 � sin aiÿ1
ÿ
sin aiÿ1 sin ji � cos aiÿ1 cos ji

�
, �A5a�

e2 � cos aiÿ1
ÿ
sin aiÿ1 sin ji � cos aiÿ1 cos ji

�
, �A5b�

s1 � 2ÿ
n
a1
�ÿ

sin ji ÿ 2b1
�� ÿsin ji � b1

�
sin ji

�
� 2 sin ji � a2 sin ji�1

�
1� ÿsin ji�1 � d1

��o
=2

�A6a�

s2 �
n
�cos ji � e2 � �

ÿ
sin ji ÿ e1

�
sin ji cos ji � ci

�ÿ
cos ji�1 � d2

�
� ÿsin ji�1 ÿ d1

�
sin ji�1 cos ji�1

�o
=2:

�A6b�

The functions f1 and f2 in eqns (1b) and (1c) present the contribution of the velocities and the
accelerations of the neighbouring links of the model to the motion of the i-th cell as
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f1 � �uiÿ1
n
a1 sin ji �

�
a1
ÿ
sin ji � b1

�ÿ 2
�
sin2 ji

o
=2

� �ui�1
n
a2

h
sin ji�1 �

ÿ
sin ji�1 � d1

�
sin2 ji�1 ÿ d1

io
=2� �wi

n
a1
ÿ
cos ji ÿ b2

�
� �a1ÿsin ji � b1

�ÿ 2
�

sin ji cos ji � a2
�ÿ

cos ji�1 ÿ d2
�

� ÿsin ji�1 � d1
�

sin ji�1 cos ji�1
�o
=2ÿ �wiÿ1

�
a1
ÿ
cos ji � b2

�
� �a1ÿsin ji � b1

�ÿ 2
�

sin ji cos ji

	ÿ �wi�1a2
��ÿ

cos ji�1 ÿ d2
�

� ÿsin ji�1 � d1
�

sin ji�1 cos ji�1
�	
=2� �� _wi ÿ _wiÿ1 � cos ji

� � _uiÿ1 ÿ _ui � sin ji

�2
cos ji

�
a1
ÿ
sin ji � b1

�ÿ 2
�
=2Li �

�� _wi�1 ÿ _wi � cos ji�1

� � _ui ÿ _ui�1 � sin ji�1
�2

cos ji�1
ÿ
sin ji�1 � d1

�
a2=2Li�1,

�A7a�

f2 � �ui

n
2e2 � sin ji �

ÿ
sin ji ÿ e1

�
sin2 ji � ci sin ji�1

�
1� sin ji�1

ÿ
sin ji�1 � d1

��o
=2

ÿ �u iÿ1 sin ji

�
1� sin ji

ÿ
sin ji ÿ e1

��
=2� �ui�1ci

h
2d1 ÿ sin ji�1

� ÿsin ji�1 � d1
�

sin 2 ji�1
i
=2� �wiÿ1

�
�cos ji ÿ e2 �

� ÿsin ji ÿ e1
�

sin ji cos ji

�
=2� �wi�1ci

�ÿ
cos ji�1 ÿ d2

�
� ÿsin ji�1 � d1

�
sin ji�1 cos ji�1

�
=2� �� _wi ÿ _wiÿ1 � cos ji

� � _uiÿ1 ÿ _ui � sin ji

�2
cos ji

ÿ
sin ji ÿ e1

�
=2Li

� �� _wi�1 ÿ _wi � cos ji�1 � � _ui ÿ _ui�1 � sin ji�1
�2

cos ji�1
ÿ
sin ji�1 � d1

�
ci=2Li�1:

�A7b�

The equations of motion for w1, wnÿ1 and un incorporate the particular boundary conditions, so that
in the lateral direction they are

s2mL1 �w1 �Ms
0 ÿMs

1�1� c1L1=L2� �Ms
2c1L1=L2 ÿNs

0L1 cos
ÿ
j1=2

�
sin j1=2

�Ns
2L1c1

�
cos a2

ÿ
sin j2 ÿ d1

�ÿ sin a2
ÿ
cos j2 ÿ d2

��
=2ÿNs

1L1

�
cos a1

�
sin j1 ÿ c1

ÿ
sin j2

� d1
��ÿ sin a1

�
cos j2 ÿ c1

ÿ
cos j2 � d2

��	
=2ÿNr

1L1

�ÿ
cos j1 � c1

ÿ
cos j2 � d2

�
=2
��
=2

�Nr
2L1c1

ÿ
cos j2 ÿ d2

�
=4�mL1 f2� �w21, �u0, �u1, �u2, _w1, _w2, _u0, _u1, _u2�,

�A8a�

where
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c1 �
ÿ
sin a1 sin j1 � 2 cos a1 cos j1

�
=
n

sin j2

�
sin a1

ÿ
1� sin2 a2

�
� cos a1 sin a2 cos a2

�
� cos j2

�
cos a1

ÿ
1� cos2 a2

�
� sin a1 sin a2 cos a2

�o
and

s2mLn �wnÿ1 �Ms
n ÿMs

nÿ1�1� cnLn=Lnÿ1 � �Ms
nÿ2cnLn=Lnÿ1 ÿNs

nÿ2Lncn
�
cos anÿ2

ÿ
sin jnÿ1 ÿ d1

�
ÿ sin anÿ2

ÿ
cos jnÿ1 ÿ d2

��
=2�Ns

nLn cos
ÿ
jn=2

�
sin jn=2ÿNs

nÿ1Ln

�
cos ai

�
sin jn ÿ cn

ÿ
sin jnÿ1

� d1
��ÿ sin ai

�
cos jn ÿ cn

ÿ
cos jnÿ1 � d2

��	
=2�Nr

nÿ2Ln

ÿ
cos jnÿ1 ÿ d2

�
=4ÿNr

nÿ1Ln

�
cos jn

� cn
ÿ
cos jnÿ1 � d2

�
=2
�
=2�mLnf2� �wnÿ2, �unÿ2, �unÿ1, �un, _wnÿ2, _wnÿ1, _unÿ2, _unÿ1, _un �,

�A8b�

where

cn �
n

sin jn

�
sin an

ÿ
1� sin2 anÿ1

�
� cos an sin anÿ1 cos anÿ1

�
� cos jn

�
cos an

ÿ
1� cos2 anÿ1

�
� sin an sin anÿ1 cos anÿ1

�o
=
ÿ
sin anÿ1 sin jn � 2 cos anÿ1 cos jn

�
The equation of motion of the n-th link of the model in the axial direction is

s1m �un � Ns
n cos

ÿ
jn=2

�ÿ
1� a1 sin jn

�ÿNs
nÿ1
�
cos anÿ1

ÿ
2ÿ a1 sin jn

�� a1 sin anÿ1 cos jn

�
=2

ÿNr
nÿ1a1 cos jn=2ÿ a1

ÿ
Ms

nÿ1 ÿMs
n

�
=Ln �mf1� �wnÿ1, �unÿ1, _wnÿ1, _unÿ1, _un� � 2mg,

�A8c�

where

s1 � 2� cos jn

�
2a1 ÿ

ÿ
a1 sin jn ÿ 2

�
sin jn

�
:

Appendix B. Constitutive relations for elastic±plastic media in a plane stress state obeying Tresca's yield
condition

The equivalent stress for the Tresca criterion in terms of principal stresses in a plane stress state is

�s � s1 ÿ s3 �B1�
where s1 and s3 are the maximum and the minimum principal stresses. The ¯ow rules associated with
Tresca yield criterion depend on the particular loading regime (Mendelson, 1972) which is represented
by the sides of the diagram in Fig. 2(c). Neglecting the shear stresses, the ¯ow rules for a material
having a linear strain hardening can be obtained as functions of dss and dsy. For sides AB and DE

dep
s �

���
3
p

2H 0
dss, dep

y � 0, dep
z � ÿdep

s �B2a�±�B2c�

when taking into account eqn (6) and d �s � jdssj. The strain increments associated with sides BC and
EF are
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dep
s � 0, dep

y �
���
3
p

2H 0
dsy, dep

z � ÿdep
y �B3a�±�B3c�

when d �s � jdsyj. The corresponding relationships between the stress increments and the plastic strain
increments are

dep
s � ÿ

���
3
p

2H 0
�dsy ÿ dss �, dep

y �
���
3
p

2H 0
�dsy ÿ dss �, dep

z � 0, �B4a�±�B4c�

on side CD when d �s � dsy ÿ dss, and

dep
s �

���
3
p

2H 0
�dss ÿ dsy�, dep

y � ÿ
���
3
p

2H 0
�dss ÿ dsy�, dep

z � 0, �B5a�±�B5c�

on side AF when d �s � dss ÿ dsy.
Explicit expressions for the stress increments as functions of the strain increments and the material

properties, and associated with each side of the Tresca diagram, can be obtained using eqns (B2)±(B5)
as

dss � 2lE�des � ndey�
�
�1ÿ l�

���
3
p
� 2l�1ÿ n2�

�ÿ1
, �B6a�

dsy � 2lE
�
2ln des �

�
�1ÿ l�

���
3
p
� 2l

�
dey
	�
�1ÿ l�

���
3
p
� 2l�1ÿ n2�

�ÿ1 �B6b�
for loading paths from the sides AB or DE,

dss � 2lE
��
�1ÿ l�

���
3
p
� 2l

�
des � 2ln dey

	�
�1ÿ l�

���
3
p
� 2l�1ÿ n2�

�ÿ1 �B7a�

dsy � 2lE�n des � dey�
�
�1ÿ l�

���
3
p
� 2l�1ÿ n2�

�ÿ1 �B7b�
for loading paths from sides BC or EF and

dss � E

2�1ÿ n�
��1ÿ l� ���

3
p � l�1� n�

����1ÿ l�
���
3
p
� 2l

�
des �

�
�1ÿ l�

���
3
p
� 2ln

�
dey
	
, �B8a�

dsy � E

2�1ÿ n�
��1ÿ l� ���

3
p � l�1� n�

����1ÿ l�
���
3
p
� 2ln

�
des �

�
�1ÿ l�

���
3
p
� 2l

�
dey
	
, �B8b�

for the loading path from sides CD or AF. It is evident that in the case of elastic loading and elastic
unloading (l � 1) eqns (B6)±(B8) give the wholly elastic stress increments

dss � E�des � n dey�=�1ÿ n2� �B9a�

dsy � E�n des � dey�=�1ÿ n2�: �B9b�

Appendix C. Wave speeds in elastic±plastic media obeying Tresca's yield condition

Consider a thin-walled tube made of an elastic±plastic rate insensitive material with linear strain
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hardening and subjected to an axial loading. It is assumed that the radial displacements are small, so
that the meridional s-axis coincides with the x-axis. The biaxial stress state ss 6� 0, sy 6� 0 is assumed to
obey the Tresca yield condition in Fig. 2(c). The corresponding constitutive equations may be written in
the form

_ex � A1 _sx � A2 _sy �C1a�

_ey � A2 _sx � A3 _sy �C1b�

where A1, A2, A3 have di�erent values depending on the side of the Tresca hexagon, namely

A1 � 1

E
�

���
3
p

2H 0
, A2 � ÿ n

E
and A3 � 1

E
�C2a�

are associated with sides AB and DE,

A1 � 1

E
, A2 � ÿ n

E
and A3 � 1

E
�

���
3
p

2H 0
�C2b�

are associated with sides BC and EF and

A1 � A3 � 1

E
�

���
3
p

2H 0
and A2 � ÿ n

E
ÿ

���
3
p

2H 0
�C2c�

are associated with sides CD and FA, respectively. The small strain kinematic equations may be written
as

_ex � vx,x �C3a�

_ey � 1

a
vr, �C3b�

where the comma denotes di�erentiation with respect to the subsequent variable and vx � @u=@ t,
vr � @w=@ t are the corresponding particle velocities. The equations of motion are given by

sx,x � r _vx, �C4a�

ÿs0 � r _vr, �C4b�

where r is the material density.
The strain rates can be eliminated from eqns (C1)±(C3) to give two equations involving only stresses

and velocities, which, together with the equations of motion, can be written in a matrix form

Atw,t � Axw,x � b � 0, �C5a,b�

where
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w �

2666664
_u

sx

_w

sy

3777775, At �

2666664
r 0 0 0

0 A1 0 A2

0 0 ra 0

0 A2 0 A3

3777775, Ax �

2666664
0 ÿ1 0 0

ÿ1 0 0 0

0 0 0 0

0 0 0 0

3777775, b �

2666664
0

0

ÿsy
ÿ _w=a

3777775: �C6a�±�C6d �

Acceleration waves propagate at speeds `c1' which are the roots of

j ÿ c1 At � Axj � 0 �C7a�

or

ÿr2a
ÿ
A2

2 ÿ A1A3

�
c41 ÿ raA3c

2
1 � 0 �C7b�

and for c1 6� 0 the acceleration wave speed is

c1 �2
�
A3=

�
r
ÿ
A1A3 ÿ A2

2

��	1=2
: �C8�

For the particular piece-wise linear yield surface in Fig. 2(c), three di�erent plastic wave speeds can
exist. The speeds associated with sides AB and DE are

c
p
1 �2�E=r�1=2

n
2l=

�
2l�1ÿ n2� � �1ÿ l�

���
3
p �o1=2

, �C9a�

the speeds associated with sides CD and FA are

c
p
2 �2�E=r�1=2

(
2l� �1ÿ l� ���

3
p

2�1ÿ n�
�
l�1� n� � �1ÿ l� ���

3
p �)1=2

, �C9b�

while the speeds associated with sides BC and EF are

c
p
3 �2�E=r�1=2

(
2l� �1ÿ l� ���

3
p

2l�1ÿ n2� � �1ÿ l� ���
3
p

)1=2

�C9c�

It is evident that the acceleration wave speeds for elastic loading or unloading (l � 1) given by eqns
(C9a±c) are identical and equal to

ce �2�E=r�1=2�1ÿ n2�ÿ1=2: �C9d �

The plastic wave speeds, cp, depend on the hardening modulus, Eh, and on the loading path. The
particular calculations show that the waves' speeds, c

p
1, associated with the parts of the Tresca hexagon

having only one plastic strain rate di�erent from zero (i.e. sides AB and DE) are very close to the
uniaxial plastic wave in a rod being equal to c

p
1121:07�lE=r�1=2 for n=0.3. The plastic waves

associated with the sides CD and FA are characterised by two plastic strain rate components, _ex, _ey, can
propagate with much larger velocities, e.g. c

p
2 120:86�E=r�1=2 for n=0.3 and Eh=E 2 �0:005, 0:05�,

typical for metals. A general discussion on the wave speeds in elastic±plastic media obeying Tresca's
yield condition can be found in Ting (1976).

D. Karagiozova, N. Jones / International Journal of Solids and Structures 37 (2000) 2005±2034 2033



References

Benson, D.J., Hallquist, J.O., 1990. A single surface contact algorithm for the post buckling analysis of shell structures. Computer

Methods in Applied Mechanics and Engineering 78, 141±163.

Chen Changen, Su Xianyue, Han Mingbao, Wang Ren, 1992. Elastic±plastic dynamic buckling and the stress wave in cylindrical

shells subjected to axial impact. In: Proceedings of the International Symposium Intense Dynamic Loading and Its E�ects,

Chengdu, China, 9±12 June, 543±546.

Florence, A.L., Goodier, J.N., 1968. Dynamic plastic buckling of cylindrical shells in sustained axial compressive ¯ow. Journal of

Applied Mechanics March, 80±86.

Jones, N., 1989. Structural Impact. Cambridge University Press (Paperback edition, 1997).

Karagiozova, D., Jones, N., 1996a. Multi-degrees of freedom model for dynamic buckling of an elastic±plastic structure.

International Journal of Solids and Structures 33, 3377±3398.

Karagiozova, D., Jones, N., 1996b. Dynamic elastic±plastic buckling phenomena in a rod due to axial impact. International

Journal of Impact Engineering 18, 919±947.

Lee, L.H.N., 1981a. Flexural waves in rods within an axial compressive wave. Wave Motion 3, 243±255.

Lee, L.H.N., 1981b. Dynamic buckling of inelastic column. International Journal of Solids and Structures 17, 413±418.

Lepik, U., 1998. On plastic buckling of cylindrical shells struck axially with a mass. International Journal of Non-Linear

Mechanics 33, 235±246.

Li Ming, Wang Ren, Han Mingbao, 1994. An experimental investigation of the dynamic axial buckling of cylindrical shells using a

Kolsky bar. Acta Mechanica Sinica 10, 260±266.

Mendelson A., 1972. Plasticity: Theory and Applications. The Macmillan Company, New York, Collier±Macmillan Limited,

London.

Murase, K., Jones, N., 1991. The transition from progressive plastic buckling to dynamic plastic buckling. Report of the Faculty

of Science and Technology, Meijo University, Nagoya, Japan, pp. 81±87.

Murase, K., Jones, N., 1993. The variation of modes in the dynamic axial plastic buckling of circular tubes. In: Gupta, N.K. (Ed.).

Plasticity and Impact Mechanics. Wiley Eastern Limited, pp. 222±237.

Nowacki, W.K., 1964. Stress-Waves in Non-Elastic Solids. Pergamon Press, UK.

Sewell, M.J., 1973. A yield-surface corner lowers the buckling stress of an elastic±plastic plate under compression. Journal of the

Mechanics and Physics of Solids 21, 19±45.

Ting, T.C.T., 1976. Wave speeds and slowness surface in elastic±plastic media obeying Tresca's yield condition. In: Proceedings of

the 13th Annual Meeting of the Society of Engineering Science, NASA/CP-2001, 85±94.

Wang Ren, Han Mingbao, Huang Zhuping, Yan Qingchun, 1983. An experimental study on the dynamic axial plastic buckling of

cylindrical shell. International Journal of Impact Engineering 1, 249±256.

D. Karagiozova, N. Jones / International Journal of Solids and Structures 37 (2000) 2005±20342034


